Abstract

Intercropping with hyperaccumulators/accumulators is a promising alternative to enhance phytoextraction of heavy metal(loid)s in contaminated soil. In this research, a pot experiment was conducted to evaluate the influences of intercropping As hyperaccumulator Pteris vittata L. with Cd hyperaccumulator Sedum alfredii Hance or accumulator Hylotelephium spectabile (Boreau) H. Ohba on the plant growth, As and Cd phytoextraction, and rhizosphere bacterial microbiota. The results indicated that intercropping can promote the growth of plants. The total biomass of P. vittata, S. alfredii, and H. spectabile in intercropping systems was improved by 19.9-34.1%, 16.8%, and 11.5%, respectively, in comparison with corresponding plant monoculture. The As content in rhizoid and frond of P. vittata when intercropped with S. alfredii was significantly increased by 28.3% and 19.0% (P < 0.05), respectively, as compared with P. vittata monoculture, and this treatment acquired the maximum As and Cd accumulation with 2032 μg·pot-1 and 397 μg·pot-1, respectively. Intercropping enhanced the soil bacterial community diversity. The genera of Lysobacter in P. vittata rhizosphere and Massilia and Arthrobacter in S. alfredii rhizosphere had higher abundance in the intercropping system of P. vittata and S. alfredii. There were significantly positive correlation relationships between Massilia and Arthrobacter with plant Cd content and Lysobacter with plant As content, indicating that they may play important roles in As and Cd phytoextraction. The results suggested that intercropping P. vittata with S. alfredii could be a potential strategy for phytoextraction of As and Cd from co-contaminated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call