Abstract

Three consecutive years of field experiments were carried out to investigate the effect of different root-zone temperatures, induced by the application of mulches, on the concentration and accumulation of Cd and Pb and on bioindicators (chlorophylls, catalase, peroxidase and cell wall fractions) in different organs of potato plants (roots, tubers, stems, and leaflets). Four different plastic covers were employed (T1, transparent polyethylene; T2, white polyethylene; T3, white and black coextruded polyethylene, and T4, black polyethylene), using uncovered plants as the control (T0). The different treatments had a significant effect on the mean root-zone temperatures (T0 = 16 degrees C, T1 = 20 degrees C, T2 = 23 degrees C, T3 = 27 degrees C, and T4 = 30 degrees C) and induced significantly different responses in the Cd and Pb concentrations and phytoaccumulation, with T2 (23 degrees C) and T3 (27 degrees C) giving high concentrations of Cd in the roots and low concentrations in other organs. In relation to Pb, T2 and T3 reached higher levels in the tubers and lower levels in the roots, stems, and leaves. In terms of phytoaccumulation, the roots and tubers were the most effective organs for Cd and Pb. On the other hand, the highest values of peroxidase and catalase activities were obtained for T3. In addition, most of the carbohydrate fractions in both the roots and the tubers were highest for T3. Meanwhile, the lowest pigment values were registered for T1 (20 degrees C). For phytoremediation, it is necessary to ascertain the relevance and control of the thermal regime of the soil to optimize the phytoextraction of pollutant elements (Cd and Pb).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.