Abstract

-Estrogens are known to induce cardioprotective effects by inhibiting smooth muscle cell (SMC) growth and neointima formation. However, the use of estrogens as cardioprotective agents is limited by carcinogenic effects in women and feminizing effects in men. If noncarcinogenic and nonfeminizing estrogenlike compounds, such as natural phytoestrogens, afford cardioprotection, this would provide a safe method for prevention of cardiovascular disease in both men and women. Therefore, we evaluated and compared in human aortic SMCs the effects of phytoestrogens (formononetin, genistein, biochanin A, daidzein, and equol) on 2.5% fetal calf serum-induced proliferation (3H-thymidine incorporation and cell number), collagen synthesis (3H-proline incorporation), and total protein synthesis (3H-leucine incorporation) and on PDGF-BB (25 ng/mL)-induced migration (modified Boydens chambers). Moreover, the effects of phytoestrogens on PDGF-BB (25 ng/mL)-induced mitogen-activated protein kinase (MAP kinase) activity in SMCs was also studied. Phytoestrogens inhibited proliferation, collagen and total protein synthesis, migration, and MAP kinase activity in a concentration-dependent manner and in the following order of potency: biochanin A>genistein>equol>daidzein>formononetin. In conclusion, our studies provide the first evidence that in human aortic SMCs phytoestrogens inhibit mitogen-induced proliferation, migration and extracellular matrix synthesis and inhibit/downregulate MAP kinase activity. Thus, phytoestrogens may confer protective effects on the cardiovascular system by inhibiting vascular remodeling and neointima formation and may be clinically useful as a safer substitute for feminizing estrogens in preventing cardiovascular disease in both women and men.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.