Abstract

The possible involvement of gibberellins (GAs) in the regulation of hypocotyl elongation by phytochrome was examined. Under white light the tall long hypocotyl (lh) cucumber (Cucumis sativus L.) mutant, deficient in a type B-like phytochrome, shows an increased "responsiveness" (defined as response capability) to applied GA4 (the main endogenous active GA) compared to the wild type. Supplementing far-red irradiation results in a similar increase in responsiveness in the wild type. Experiments involving application of the precursor GA9 and of an inhibitor of GA4 inactivation suggest that both the GA4 activation and inactivation steps are phytochrome independent. Endogenous GA levels of whole seedlings were analyzed by combined gas chromatography-mass spectrometry using deuterated internal standards. The levels of GA4 (and those of GA34, the inactivated GA4) were lower in the lh mutant under low-irradiance fluorescent light compared with the wild type, similar to wild type under higher irradiance light during the initial hypocotyl extension phase, and higher during the phase of sustained growth, in which extension involved an increase in the number of cells in the upper region. In all cases, growth of the lh mutant was more rapid than that of the wild type. It is proposed that GA4 and phytochrome control cell elongation primarily through separate mechanisms that interact at a step close to the terminal response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.