Abstract

Internode extension in young, light-grown mustard plants was measured continuously to a high degree of resolution using linear voltage displacement transducers. Plants were grown in background white light (WL) and the first internode was irradiated with supplementary far-red (FR) from fibre-optic light guides, depressing the Pfr/P (ratio of FR-absorbing form of phytochrome to total spectrophotometrically assayable phytochrome) within the internode and causing an acceleration of extension rate. The internode was sensitive to periods of FR as brief as 1 min, with a sharp increase in extension rate occurring after the return to background WL only. The mean latent period of the response to FR was approx. 10 min. Periods of FR longer than approx. 35 min caused an apparently biphasic growth response, with an initial sharp acceleration in extension rate (Phase 1) being followed by a brief deceleration and a further acceleration to a more-or-less steady elevated rate, somewhat less than the first peak (Phase 2). With such longer-term FR, extension rate decelerated upon FR switch-off after a mean lag of approx. 6 min, achieving the prestimulation extension rate within 16 min. The magnitude of the FR-induced increase in extension rate, expressed as a percentage of the rate in WL alone, was an inverse, linear function of the phytochrome photoequilibrium (i.e. Pfr/P, measured in etiolated test material irradiated under the same geometry) over the range 0.17 to 0.63. This relationship was not significantly affected by variations in backround WL fluence rate over the range 50-150 μmol·m(-2)·s(-1) and was held both for Phase 1 and Phase 2 of the response. The data provide evidence for rapid coupling/uncoupling between phytochrome and its transduction chain in the light-grown plant and for fluence-rate compensation of the regulation of extension rate. The extensive linearity of the relationship between phytochrome photoequilibrium and proportional extension rate increment allows for fine tuning in shade avoidance. The results are discussed with respect to recent evidence on the nature of phytochrome in light-grown plants and in relation to the function of phytochrome in plants growing in the natural environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call