Abstract
The naturally occurring compounds curcumin (CUR), 3,3′-diindolylmethane (DIM), isoxanthohumol (IXN), 8-prenylnaringenin (8PN), phenethyl isothiocyanate (PEITC) and sulforaphane (SFN) protect animals against chemically induced tumours. Putative chemoprotective mechanisms include modulated expression of hepatic biotransformation enzymes. However, few, if any, studies have used human primary cells as test models.The present study investigated the effects of these phytochemicals on the expression of four carcinogenesis-relevant enzymes — cytochrome P450 (CYP)1A1 and 1A2, NAD(P)H:quinone oxidoreductase (NQO1) and glutathione S-transferase A1 (GSTA1) — in primary cultures of freshly isolated human hepatocytes.Quantitative RT-PCR analyses demonstrated that CYP1A1 was up-regulated by PEITC and DIM in a dose-dependent manner. CYP1A2 transcription was significantly activated following DIM, IXN, 8PN and PEITC treatments. DIM exhibited a remarkably effective induction response of CYP1A1 (474-, 239- and 87-fold at 50, 25 and 10 μM, respectively) and CYP1A2 (113-, 70- and 31-fold at 50, 25 and 10 μM, respectively), that was semiquantitatively reflected in protein levels. NQO1 expression responded to PEITC (11 × at 25 μM), DIM (4.5 × at 50 μM) and SFN (5 × at 10 μM) treatments. No significant effects on GSTA1 transcription were seen.The findings show novel and unexpected effects of these phytochemicals on the expression of human hepatic biotransformation enzymes that play key roles in chemical-induced carcinogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.