Abstract

BackgroundPlants produce secondary metabolites that often possess widespread bioactivity, and are then known as phytochemicals. We previously determined that several phytochemical-rich food-derived preparations were active against pathogenic foodborne bacteria. Trichomonads produce disease (trichomoniasis) in humans and in certain animals. Trichomonads are increasingly becoming resistant to conventional modes of treatment. It is of interest to test bioactive, natural compounds for efficacy against these pathogens.MethodsUsing a cell assay, black tea, green tea, grape, pomegranate, and jujube extracts, as well as whole dried jujube were tested against three trichomonads: Trichomonas vaginalis strain G3 (found in humans), Tritrichomonas foetus strain D1 (found in cattle), and Tritrichomonas foetus-like organism strain C1 (found in cats). The most effective of the test substances was subsequently tested against two metronidazole-resistant Trichomonas vaginalis strains, and on normal mucosal flora.ResultsBlack tea extract inhibited all the tested trichomonads, but was most effective against the T. vaginalis organisms. Inhibition by black tea was correlated with the total and individual theaflavin content of the two tea extracts determined by HPLC. Metronidazole-resistant Trichomonas vaginalis strains were also inhibited by the black tea extract. The response of the organisms to the remaining preparations was variable and unique. We observed no effect of the black tea extract on common normal flora bacteria.ConclusionsThe results suggest that the black tea, and to a lesser degree green tea, grape seed, and pomegranate extracts might present possible natural alternative therapeutic agents to treat Trichomonas vaginalis infections in humans and the related trichomonad infections in animals, without negatively affecting the normal flora.

Highlights

  • Plants produce secondary metabolites that often possess widespread bioactivity, and are known as phytochemicals

  • We previously reported that the tomato glycoalkaloid tomatine strongly inhibited the growth of the following three mucosal pathogenic protozoa strains that are reported to infect humans, cattle, and cats: Trichomonas vaginalis strain G3, Tritrichomonas foetus strain D1, and Tritrichomonas foetus strain C1, respectively [6]

  • It is of fundamental interest to determine if other edible plants, especially those that have been shown to inhibit the growth of pathogenic bacteria and viruses, have the ability to inactivate pathogenic protozoa as did tomatine

Read more

Summary

Introduction

Plants produce secondary metabolites that often possess widespread bioactivity, and are known as phytochemicals. Trichomonads produce disease (trichomoniasis) in humans and in certain animals. Trichomoniasis, caused by the pathogenic trichomonad Trichomonas vaginalis, is one of the most common nonviral sexually transmitted infections in the world. It contributes to reproductive morbidity and facilitates transmission of the human immunodeficiency virus (HIV) [1]. We previously reported that the tomato glycoalkaloid tomatine strongly inhibited the growth of the following three mucosal pathogenic protozoa strains that are reported to infect humans, cattle, and cats: Trichomonas vaginalis strain G3, Tritrichomonas foetus strain D1, and Tritrichomonas foetus strain C1, respectively [6]. The results suggest that natural food ingredients have the potential to prevent and treat trichomoniasis in animals and humans.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.