Abstract

In light of the growing interest for eco-compatible fertilization, tomato plant roots were treated with four different strains of microorganisms (B1–B4) capable of positively affecting plant growth. The methanolic extracts from treated roots were analysed by reverse phase ultra-high-performance liquid chromatography hyphenated with ion trap time-of-flight high-resolution mass spectrometry to compare their metabolites with that of control plants (B0). We found, in both treated and control plants, several primary metabolites, such as fatty acids and coumaric acid, and other compounds associated with secondary metabolism pathways such as that of cyclopentaneoctanoic acid (CPOA) or hydroxyoctadecadienoic acid (HODE), and additional molecules which were not characterizable with the available data. A semiquantitative assessment of all metabolites became the basis for further processing the metabolic results by principal component analysis, which highlighted significant differences in the PC1 and PC2 components. The PC1 was particularly affected by the presence of arachidonic acid, myristic acid, and two unidentified metabolites. It effectively differentiated control plants from all bioeffectors treatments, and, in particular, the B4 treatment from the rest (B1–B3). The PC2 was mainly affected by palmitic acid, heptadecanoic acid, two CPOAs, one HODE and two unidentified metabolites. These metabolites successfully differentiated the B0 control from all the bioeffectors treatments, and, especially, showed a difference between B1 and B2. Our findings suggest that changes in secondary pathways of lipid metabolism may underlie the biostimulation exerted by the four microbial bioeffectors of this study, and that LC–MS coupled by multivariate analysis can easily fingerprint the metabolic alterations induced by bioeffectors in tomato roots.

Highlights

  • In light of the growing interest for eco-compatible fertilization, tomato plant roots were treated with four different strains of microorganisms (B1–B4) capable of positively affecting plant growth

  • Characterization and semiquantitative assessment of metabolites Through the bundled software masses obtained by high resolution, negative scans were translated into a restricted number of CxHyOz formulae

  • Tandem mass spectrometry (MS) facilitated formula attribution by either allowing comparison with masses reported in the literature or ruling out plausible mother ions that were incompatible with the fragmentation pattern

Read more

Summary

Introduction

In light of the growing interest for eco-compatible fertilization, tomato plant roots were treated with four different strains of microorganisms (B1–B4) capable of positively affecting plant growth. The methanolic extracts from treated roots were analysed by reverse phase ultra-high-performance liquid chromatography hyphenated with ion trap time-of-flight high-resolution mass spectrometry to compare their metabolites with that of control plants (B0). Owing to the large application of fertilizers, pesticides, and mechanization, crop yields have increased to match the world population demands. The extensive usage of agrochemicals has begun to raise an environmental concern. Agricultural science is facing the challenge of providing environmentally sustainable technologies to maintain, if not increase, crop.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.