Abstract
Hydrilla verticillata (L.f.) Royle is a perennial aquatic plant, which exhibits nutritional as well as therapeutic properties. The present study has been carried out to evaluate anti-inflammatory and immunomodulatory activities along with in silico evaluation of potential selective COX-2 and TNF-α inhibitors from methanolic extract of H. verticillata (L.f.) Royle. The potential therapeutic compounds have been identified by high-resolution GC-MS analysis. Its capacity to inhibit inflammatory responses using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells has been explored. The anti-inflammatory properties of the plant extract were investigated by inhibiting inducible nitric oxide (NO) synthase and reduced NO generation driven by LPS on stimulated RAW 264.7 macrophage cells. Further investigation for the underlying molecular mechanism of the anti-inflammatory activity of plant extract has been carried out by molecular docking and molecular dynamics simulation approaches with COX-2 and TNF-α inhibitors ability against the most potent phytocompound phytol from the plant extract. To evaluate whether the extract causes any toxicity, the cytotoxicity test has been carried out with the Human embryonic kidney cell line (Hek-293), Mouse fibroblast (L929), human mesenchyme stem cells (hMSCs) and human breast epithelial cell line (MCF-10a). Ultimately, our findings suggest that the plant extract have great potential to reduce inflammation without causing any toxicity to normal cell. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.