Abstract

Pollen and nectar consumed by honey bees contain plant secondary metabolites (PSMs) with vital roles in plant-insect interactions. While PSMs can be toxic to bees, they can also be health-promoting, e.g. by improving pesticide and pathogen tolerances. As xenobiotics, PSMs undergo post-ingestion chemical modifications that can affect their bioactivity and transmission to the brood. Despite the importance of understanding honey bee PSM metabolism and distribution for elucidating bioactivity mechanisms, these aspects remain largely unexplored. In this study, we used HPLC-MS/MS to profile 47 pollen PSMs in honey bees and larvae. Both adult bees and larvae had distinct PSM profiles that differed from their diet. This is likely due to post-ingestion metabolism and compound-dependent variations in PSM transmission to the brood via nurse bee jelly. Phenolic acids and flavonoid aglycones were most abundant in bees and larvae, whereas alkaloids, cyanogenic glycosides and diterpenoids had the lowest abundance despite being consumed in higher concentrations. This study documents larval exposure to a variety of PSMs for the first time, with concentrations increasing from early to late larval instars. Our findings provide novel insights into the post-ingestion fate of PSMs in honey bees, providing a foundation for further exploration of biotransformation pathways and PSM effects on honey bee health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.