Abstract

Among health-promoting phytochemicals in whole grains, phenolic compounds have gained attention as they have strong antioxidant properties and can protect against many degenerative diseases. Aim of this study was to profile grain phenolic extracts of one modern and five old common wheat (Triticum aestivum L.) varieties and to evaluate their potential antiproliferative or cytoprotective effect in different cell culture systems.Wheat extracts were characterized in terms of antioxidant activity and phenolic composition (HPLC/ESI-TOF-MS profile, polyphenol and flavonoid contents). Results showed that antioxidant activity (FRAP and DPPH) is mostly influenced by flavonoid (both bound and free) content and by the ratio flavonoids/polyphenols. Using a leukemic cell line, HL60, and primary cultures of neonatal rat cardiomyocytes, the potential antiproliferative or cytoprotective effects of different wheat genotypes were evaluated in terms of intracellular reactive oxygen species levels and cell viability. All tested wheat phenolic extracts exerted dose-dependent cytoprotective and antiproliferative effects on cardiomyocytes and HL60 cells, respectively. Due to the peculiar phenolic pattern of each wheat variety, a significant genotype effect was highlighted. On the whole, the most relevant scavenging effect was found for the old variety Verna. No significant differences in terms of anti-proliferative activities among wheat genotypes was observed. Results reported in this study evidenced a correspondence between the in vitro antioxidant activity and potential healthy properties of different extracts. This suggests that an increased intake of wheat grain derived products could represent an effective strategy to achieve both chemoprevention and protection against oxidative stress related diseases.

Highlights

  • Numerous studies confirm that cereals exert a protective action on human health and are key components of a healthy and balanced diet

  • It is well established that the imbalance between the production of reactive oxygen species (ROS) and the neutralizing capacity of the antioxidant system generates a condition referred to as oxidative stress, a causative factor in the onset and development of several acute and chronic-degenerative diseases [32,33,34,35,36]

  • According to epidemiological data showing that diet plays a crucial role in the prevention of chronic diseases, such as cardiovascular diseases, cancer, diabetes, and neurodegeneration, there is an increasing interest in exploring and establishing new dietetic strategies aiming at the prevention/counteraction of oxidative damage and research is focused on the potential influence of exogenous antioxidants on cytoprotection [37,38,39]

Read more

Summary

Introduction

Numerous studies confirm that cereals exert a protective action on human health and are key components of a healthy and balanced diet. Cereals and cereal products are placed at the base of the food pyramid [1]. Recent studies on the health benefits of functional products from wheat have become increasingly more focused on the importance of introducing phytochemicals through the use of different varieties. It is noteworthy that modern breeding programs for genetic improvement have been primarily focused on yield improvement, and on the improvement of disease and pest resistance rather than nutritional and functional characteristics. Little attention has been given to the selection of varieties according to nutritional value. Research aiming at the characterization of the phytochemical profile of wheat varieties focusing on antioxidants compounds like polyphenols, flavonoids, carotenoids, tocopherols, may represent a new prospect for the genetic improvement of the genus Triticum

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call