Abstract

BackgroundPlants are an efficient source of natural antioxidant against free radicals causing kidney damages. Sida cordata ethyl acetate fraction has been reported for strong in vitro antioxidant potency, previously. In the present study, our objective was to evaluate its in vivo antioxidant potency against CCl4 induced nephrotoxicity and investigates the bioactive phytochemicals by HPLC-DAD analysis.MethodsPhytochemical analysis was performed by HPLC-DAD methodology. For in vivo study, 42 male Sprague-Dawley rats were treated with alternatively managed doses for 60 days. Group I animals were remained untreated. Group II animals were treated with vehicle (1 mL of olive oil) by intragastric route on alternate days. Group III was treated with 30% CCl4 (1 mL/kg b.w.) i.p. Group IV was treated with 30% CCl4 (1 mL/kg b.w.) i.p and silymarin intragastric. Group V and VI rats were treated with 30% CCl4 and SCEE (150 and 300 mg/kg b.w., respectively) intragastric. Group VII animals were treated with SCEE (300 mg/kg b.w.) intragastrically. Blood parameters, Serum proteins and urine profile were investigated. Activities of tissue enzyme i.e. catalase, peroxidase, superoxide dismutase, glutathione-S-transferase, glutathione reductase, GSH and γ-GT were evaluated. Histopathological observations, total protein contents, lipid peroxidation, DNA damage and relative weight were also analyzed.ResultsGallic acid, catechin and caffeic acid were identified in SCEE fraction by HPLC-DAD. Decrease in the count of red blood cells, neutrophils, eosinophils and concentration of hemoglobin whereas increase in lymphocyte count and estimation of sedimentation rate (ESR) with 1 mL CCl4 (30% in Olive oil) administration (30 doses in 60 days) was restored dose dependently with co-treatment of SCEE (150 and 300 mg/kg b.w.). Treatment of rats with CCl4 markedly (P < 0.01) increased the count of urinary red blood cells and leucocytes, concentration of urea, creatinine and urobilinogen and specific gravity whereas creatinine clearance was reduced. Serum level of total protein, albumin, globulin, nitrite, creatinine and blood urea nitrogen (BUN) was significantly increased (P < 0.01) by CCl4 treatment. The activity of antioxidant enzymes; catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase and content of reduced glutathione was decreased (P < 0.01) significantly. However, increased concentration (P < 0.01) of thiobarbituric acid reactive substances and histopathological injuries were noticed in the renal tissues of rats after the treatment with CCl4. Co-administration of SCEE, dose dependently, protected the alterations in the studied parameters of rats at 150 and 300 mg/kg b.w. The present study revealed that SCEE could be used as a possible remedy for renal toxicity abnormalities.ConclusionThese results are an evidence of the renal protective role of S.cordat ethyl acetate fraction against CCl4 induced nephrotoxicity in rats which may be due to its antioxidant compounds.

Highlights

  • Plants are an efficient source of natural antioxidant against free radicals causing kidney damages

  • We have reported in vitro antioxidant potential of S. cordata by using different antioxidant assays such as DPPH, H2O2, NO− and anti-lipid peroxidation assays

  • For in vivo study of SCEE, doses of 150 and 300 mg/kg b.w. were selected from NA Shah, MR Khan, B Ahmad, F Noureen, U Rashid and RA Khan [22] previous reports

Read more

Summary

Introduction

Plants are an efficient source of natural antioxidant against free radicals causing kidney damages. Its harmful effect on the kidney occurs due to the CCl4 toxic metabolites; trichloromethyl and trichloromethylperoxy radicals inherent in the cytochrome P450 system These reactive species trigger lipid peroxidation along with reduced total proteins [6] which are controlled through antioxidant enzymes e.g. catalase, peroxidase and superoxide dismutase and phase II metabolizing enzymes which prevent lipid peroxidation in the kidney [7, 8]. Due to its well explained mechanism of toxicity induction, many studies have adopted it as renal free radicals inducing agent [9,10,11,12,13] To cope with such reactive species, it is essential to obtain dietary antioxidants to counteract the excess of these species. Plants secondary metabolites i.e. polyphenols can scavenge free radicals and control the oxidative damage of proteins and lipids [20]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call