Abstract

The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it indispensable in unraveling the complexities of land plant evolution and responses to environmental stimuli. As an evolutionary bridge between algae and vascular plants, P. patens offers a unique perspective on early terrestrial adaptation. This research involved the biotechnological cultivation of P. patens, followed by a deep phytochemical investigation of two extracts covering a large polarity range together using an NMR-based dereplication approach combined with GC/MS analyses. Subsequently, a multidisciplinary approach combining bioinformatics, in-silico techniques, and traditional methods was adopted to uncover intriguing molecules such as the diterpene ceruchinol and its potential receptor interactions for future cosmetic applications. The kaurene diterpene ceruchinol, representing up to 50% of the supercritical CO2 extract and also identified in the hydroalcoholic extract, was selected for the molecular docking study, which highlighted several biological targets as CAR, AKR1D1, and 17β-HSD1 for potential cosmetic use. These findings offer valuable insights for novel uses of this plant biomass in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call