Abstract

BackgroundExtracts from medicinal plants with phytochemicals with known antimicrobial properties can be an effective adjunct in the complex treatment of infectious diseases. This study aimed to evaluate the antimicrobial activity of wormwood extracts collected in Kazakhstan (Artemisia gmelinii Weber ex Stechm.), along with their phytochemical analysis.MethodsThe ethanolic and chloroform extracts were subjected to HPLC combined with quadrupole time-of-flight mass spectrometry method. For quantitative assessment of antimicrobial activity, minimal inhibitory concentration (MIC) of the tested extracts was determined by micro-dilution broth method for the panel of the reference microorganisms. Minimal bactericidal concentration (MBC) or minimal fungicidal concentration (MFC) were also determined.ResultsLC/MS analysis showed the presence of 13 compounds in the tested extracts, including flavonoids: apigenin, luteolin, rutin, two O-methylated flavonols (isorhamnetin, rhamnazine), coumarin compounds (umbelliferone, scopoletin and scopolin (scopoletin 7-glucoside), 3-hydroxycoumarin and 4-hydroxycoumarin), chlorogenic acid and two dicaffeoylquinic acid isomers. Quantitative HPLC analysis showed that umbelliferone was dominant in the chloroform extract while chlorogenic acid was identified as a main compound in the ethanolic extract. The antibacterial and antifungal activity of chloroform and ethanolic extracts was comparable. The most sensitive were the Gram-positive bacteria represented by staphylococci, Micrococcus luteus and Bacillus spp. (MIC = 1.25–5 mg/ml) and yeasts represented by Candida spp. (MIC = 2.5–5 mg/ml), irrespective of the assayed extract.ConclusionsExtracts of wormwood Artemisia gmelinii have shown a wide spectrum of antibacterial and antifungal activity. Luteolin, rutin, isorhamnetin and scopolin were identified in A. gmelinii species for the first time. The determining of the most potential compounds of Artemisia gmelinii can be used to develop effective antibacterial and antifungal agents.

Highlights

  • Extracts from medicinal plants with phytochemicals with known antimicrobial properties can be an effective adjunct in the complex treatment of infectious diseases

  • Antimicrobial activity assay in vitro The ethanolic and chloroform extracts were screened for antibacterial and antifungal activities by micro-dilution broth method according to both the European Committee on Antimicrobial Susceptibility Testing (EUCAST) using Mueller-Hinton broth and MuellerHinton broth with 5% lysed sheep blood for growth of non-fastidious and fastidious bacteria, respectively or RPMI with MOPS for growth of fungi as we described elsewhere [16]

  • Phytochemical analysis Prior to comprehensive sample analysis, extracts from A. gmelinii with different polarities were subjected to HPLC-diode – array detector (DAD) and Liquid chromatography-mass spectrometry (LC-MS) analysis in order to systemise the knowledge about phytochemical composition

Read more

Summary

Introduction

Extracts from medicinal plants with phytochemicals with known antimicrobial properties can be an effective adjunct in the complex treatment of infectious diseases. This study aimed to evaluate the antimicrobial activity of wormwood extracts collected in Kazakhstan (Artemisia gmelinii Weber ex Stechm.), along with their phytochemical analysis. Artemisia gmelinii Webb & Stechmann, known as Gmelin’s wormwood, is one from over 500 species in the genus Artemisia (Asteraceae). It is a perennial plant, reaching up to 50–150 cm of height, richly-branched, grayish-brown color, strongly woody at the bottom. The fruit is achene (1,5 mm) finely – striped, brown. They bloom from August to October [1, 2]. The plant’s preference is a sandy and loamy, well drained soil [2]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.