Abstract

Cadmium (Cd) pollution in cultivated soils has posed a great risk to human health through the soil-plant-human pathway. Therefore, it is important to derive soil thresholds for the low-Cd accumulating genotype of wheat (Triticum aestivum L.) to promote its application in agricultural production on Cd-contaminated sites. Here, a pot experiment was performed to explore the transfer characteristics of Cd in two contrasting wheat genotypes at three different soils and the effect of soil parameters together with soil safety Cd thresholds derivation. Generally, grain Cd highly accumulating wheat genotype (Zhenmai10, HT) showed higher Cd accumulation in grains than grain Cd weakly accumulating wheat genotype (Aikang58, LT). Stepwise multiple linear regression (SMLR) analysis (log-transformed Freundlich-type) indicated that Cd accumulation in wheat grains was strongly related to soil total Cd concentration and pH for both genotypes (R2 = 0.907*** for HT; R2 = 0.910*** for LT). Combining the simple regression model of soil-plant transfer system with the risk assessment method based on human health, soil total Cd thresholds for three soils were calculated with the values of 0.62, 0.82, and 0.62 mg kg-1 in LT genotype and 0.31, 0.77, and 0.49 mg kg-1 in HT genotype. Therefore, we suggested that when deducing soil thresholds, the ability of wheat genotypes to accumulate Cd and soil properties should be considered because of the large differences in soil thresholds between different genotypes and types of soils. We believe our results will promote the application of low-Cd wheat genotypes to agricultural production, thereby ensuring the safety of their products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.