Abstract

Biochar has attracted interest due to its ability to improve soil fertility, soil carbon, and crop yield. Also, biochar can adsorb metals and render them less bioavailable. We investigated the soil availability, sequential extraction, and maize uptake of Cd, Pb, and Zn in a highly contaminated soil amended with rice straw biochar rates (0.0, 5.0, 10.0, 20.0, and 30.0 Mg ha-1). We hypothesized that biochar application to the soil cultivated with maize attenuates metal toxicity and mobility in slag-polluted soils near an abandoned Pb smelting plant in Brazil. Results showed that applying biochar increased the soil organic carbon, CEC, and P up to 27, 30, and 107, respectively. Plant accumulation of P and N was 104 and 32% higher than control, while aerial and root biomasses were increased by 18 and 23%. The sequential extraction showed that Pb and Zn in the original soil were retained mainly in residual fractions (94 and 87%, respectively), while Cd was mostly allocated in the organic fraction (47%). Biochar rates increased the proportion of Cd in the organic fraction to 85%, while Pb and Zn were redistributed mainly into iron oxides. The Cd, Pb, and Zn bioavailability assessed by DTPA decreased 32% in the biochar-amended soil, reducing plants' metal uptake. The maize biomass increase, metal soil bioavailability decrease, and low metal concentration in shoots driven by biochar indicate that phytoattenuation using rice straw biochar and maize cultivation could reduce risks to humans and the environment in the polluted sites of Santo Amaro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call