Abstract

The use of flexible polyurethane foam (FPUF) is severely limited due to its flammability and dripping, which can easily cause major fire hazards. Therefore, choosing an appropriate flame retardant to solve this problem is an urgent need. A coating was prepared on the FPUF surface by dipping with phytic acid (PA), Fe2(SO4)3·xH2O, and laponite (LAP). The influence of PA-Fe/LAP coating on FPUF flame-retardant performance was explored by thermal stability, flame retardancy, combustion behavior, and smoke density analysis. FPUF/PA-Fe/LAP has a good performance in the small fire test, which can pass the UL-94 V-0 rating and the limiting oxygen index reaches 24.5%. Meanwhile, the peak heat release rate values and maximum smoke density of FPUF/PA-Fe/LAP are reduced by 38.7% and 38.5% compared with those of neat FPUF. After applying PA-Fe/LAP coating, the value of fire growth rate index decreases from 10.5 kW/(m2·s) to 5.1 kW/(m2·s), dramatically reducing the fire risk. Encouragingly, the effect of PA-Fe/LAP coating on cyclic compression and permanent deformation is small, which is close to that of neat FPUF. This work provides an effective strategy for making a flame-retardant FPUF with antidripping and keeping mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call