Abstract

Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air-lift fermenters. Among surfactants tested, Tweens (Tween-20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X-100 inhibited the enzyme production. The mould produced phytase optimally at a(w) 0.95, and it declined sharply below this a(w) value. The enzyme production was comparable in air-lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca-alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. The phytase production by S. thermophile was enhanced in the presence of Tween-80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca-alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high-soluble phosphate. The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air-lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call