Abstract

The repartition of molecular hydrogen in space, and its depletion on solid particles in particular, is an important question of modern astrophysics. In this paper, we report a theoretical study of the physisorption of molecular hydrogen, H2, on a major component of the interstellar dust known as polycyclic aromatic hydrocarbons (PAHs). Two different density functional theory approaches were used: (i) the conventional Kohn−Sham theory and (ii) the subsystem-based approach (Kohn−Sham equations with constrained electron density, KSCED) developed in our group. The approximate exchange-correlation energy functional applied in all calculations and the nonadditive kinetic-energy functional needed in KSCED have a generalized gradient approximation form and were chosen on the basis of our previous studies. The results of both approaches show similar trends: weak dependence of the calculated interaction energies on the size of the PAH and negligible effect of the complexation of two PAH molecules on the adsorptio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.