Abstract

The interaction of trimethyl methylcyclopentadienyl platinum (MeCpPtMe3) with a fully hydroxylated SiO2 surface has been explored by means of ab initio calculations. A large slab model (3 × 3 × 4 supercell) cut out from the hydroxylated β-cristobalite SiO2 (111) surface was chosen to simulate a silica surface. Density functional theory calculations were performed to evaluate the energies of MeCpPtMe3 adsorption to the SiO2 surface. Our results show that the physisorption of the molecule is dependent on both (i) the orientation of the adsorbate and (ii) the adsorption site on the substrate. The most stable configuration was found with the MeCp and Me3 groups of the molecule oriented toward the surface. Finally, we observe that van der Waals corrections are crucial for the stabilization of the molecule on the surface. We discuss the relevance of our results for the growth of Pt-based nanostructured materials via deposition processes such as electron beam-induced deposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.