Abstract
The DFT parametrized zeolite force field in the QM-Pot program is extended with carbon−carbon, carbon−hydrogen, and alkoxy bond describing parameters. The extended force field has been combined with B3LYP and with MP2 as the high-level quantum mechanical (QM) method to simulate the physisorption and chemisorption of ethene, isobutene, 1-butene, 1-pentene, and 1-octene in H-FAU (Si/AlF = 95) and for physisorption of 1-pentene, n-pentane, 1-octene, and n-octane in all silica FAU. The new parametrization predicts more stable chemisorption complexes than physisorbed π complexes, but with smaller chemisorption energies which are more reliable as shown by comparison with experimental results and with accurate hybrid MP2:DFT calculations. An embedded cluster size study shows that, due to the importance of the stabilizing van der Waals part in the MM contribution of the cluster, QM-Pot(MP2//B3LYP) calculations yield more reliable physisorption and chemisorption energies of hydrocarbons in zeolites than QM-Pot(B3L...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.