Abstract

Septic shock is a life-threatening manifestation of infection with a mortality of 20-50% [1]. A catecholamine vasopressor, norepinephrine (NE), is widely used to treat septic shock primarily by increasing blood pressure. For this reason, future blood pressure knowledge is invaluable for properly controlling NE infusion rates in septic patients. However, recent machine learning and data-driven methods often treat the physiological effects of NE as a black box. In this paper, a real-time, physiology-informed human mean arterial blood pressure model for septic shock patients undergoing NE infusion is studied. Our methods combine learning theory, adaptive filter theory, and physiology. We learn least mean square adaptive filters to predict three physiological parameters (heart rate, pulse pressure, and the product of total arterial compliance and arterial resistance) from previous data and previous NE infusion rate. These predictions are combined according to a physiology model to predict future mean arterial blood pressure. Our model successfully forecasts mean arterial blood pressure on 30 septic patients from two databases. Specifically, we predict mean arterial blood pressure 3.33 minutes to 20 minutes into the future with a root mean square error from 3.56 mmHg to 6.22 mmHg. Additionally, we compare the computational cost of different models and discover a correlation between learned NE response models and a patient's SOFA score. Our approach advances our capability to predict the effects of changing NE infusion rates in septic patients. More accurately predicted MAP can lessen clinicians' workload and reduce error in NE titration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call