Abstract

AbstractCereal grain germination and early seedling growth involve the co-ordinated action of endosperm and embryo tissues to mobilize the storage reserves of the starchy endosperm. This mobilization is accomplished by hydrolases secreted from the aleurone and scutellar tissues. The breakdown products are then transported to the growing seedling by the scutellum. This resource-harvesting system is regulated at multiple levels. One well-defined aspect of control is brought about by the hormone gibberellin (GA). Gibberellin is released from the embryo upon imbibition and activates the aleurone cells. The secretory apparatus of the aleurone then proliferates, supporting increased hydrolase synthesis and secretion to degrade the starchy endosperm. The molecules that regulate this response to GA are now being increasingly characterized. Elements such as cGMP, calcium, calmodulin and protein kinases are well known as regulators in other eukaryotic cell types and are emerging as key control factors in the aleurone hormone response. However, superimposed upon this molecular regulatory system is another level of control, the structural pattern of tissues and stored macro- molecules that was laid down during grain development. It is the interaction of these structural motifs combined with the molecular regulatory mechanisms that ensure the appropriate timing and positioning of hydrolase production and endosperm reserve mobilization. This integrated control system ensures an extended release of nutrients to fuel early seedling growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call