Abstract

One of the immediate eukaryotic cellular responses to DNA breakage is the covalent post-translational modification of nuclear proteins with poly(ADP-ribose) from NAD+ as precursor, mostly catalysed by poly(ADP-ribose) polymerase-1 (PARP-1). Recently several other polypeptides have been shown to catalyse poly(ADP-ribose) formation. Poly(ADP-ribosyl)ation is involved in a variety of physiological and pathophysiological phenomena. Physiological functions include its participation in DNA-base excision repair, DNA-damage signalling, regulation of genomic stability, and regulation of transcription and proteasomal function, supporting the previously observed correlation of cellular poly(ADP-ribosyl)ation capacity with mammalian life. The pathophysiology effects are mediated through PARP-1 overactivity, which can cause cell suicide by NAD+ depletion. It is apparent that the latter effect underlies the pathogenesis of a wide range of disease states including type-1 diabetes, ischaemic infarcts in various organs, and septic or haemorrhagic shock. Therefore pharmacological modulation of poly(ADP-ribosyl)ation may prove to be an exciting option for various highly prevalent, disabling and even lethal diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.