Abstract

Intraneuronal aggregation of TDP-43 is seen in 97% of all amyotrophic lateral sclerosis cases and occurs by a poorly understood mechanism. We developed a simple in vitro model system for the study of full-length TDP-43 aggregation in solution and in protein droplets. We found that soluble, YFP-tagged full-length TDP-43 (yTDP-43) dimers can be produced by refolding in low-salt HEPES buffer; these solutions are stable for several weeks. We found that physiological electrolytes induced reversible aggregation of yTDP-43 into 10-50 nm tufted particles, without amyloid characteristics. The order of aggregation induction potency was K+ < Na+ < Mg2+ < Ca2+, which is the reverse of the Hofmeister series. The kinetics of aggregation were fit to a single-step model, and the apparent rate of aggregation was affected by yTDP-43 and NaCl concentrations. While yTDP-43 alone did not form stable liquid droplets, it partitioned into preformed Ddx4N1 droplets, showing dynamic diffusion behavior consistent with liquid-liquid phase transition, but then aggregated over time. Aggregation of yTDP-43 in droplets also occurred rapidly in response to changes in electrolyte concentrations, mirroring solution behavior. This was accompanied by changes to droplet localization and solvent exchange. Exposure to extracellular-like electrolyte conditions caused rapid aggregation at the droplet periphery. The aggregation behavior of yTDP-43 is controlled by ion-specific effects that occur at physiological concentrations, suggesting a mechanistic role for local electrolyte concentrations in TDP-43 proteinopathies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.