Abstract

A key component of whole body physiologically based pharmacokinetic (WBPBPK) models is the tissue-to-plasma water partition coefficients (Kpu's). The predictability of Kpu values using mechanistically derived equations has been investigated for 7 very weak bases, 20 acids, 4 neutral drugs and 8 zwitterions in rat adipose, bone, brain, gut, heart, kidney, liver, lung, muscle, pancreas, skin, spleen and thymus. These equations incorporate expressions for dissolution in tissue water and, partitioning into neutral lipids and neutral phospholipids. Additionally, associations with acidic phospholipids were incorporated for zwitterions with a highly basic functionality, or extracellular proteins for the other compound classes. The affinity for these cellular constituents was determined from blood cell data or plasma protein binding, respectively. These equations assume drugs are passively distributed and that processes are nonsaturating. Resultant Kpu predictions were more accurate when compared to published equations, with 84% as opposed to 61% of the predicted values agreeing with experimental values to within a factor of 3. This improvement was largely due to the incorporation of distribution processes related to drug ionisation, an issue that is not addressed in earlier equations. Such advancements in parameter prediction will assist WBPBPK modelling, where time, cost and labour requirements greatly deter its application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.