Abstract

Drug-Combination Nanoparticles (DcNP) are a novel drug delivery system designed for synchronized delivery of multiple drugs in a single, long-acting, and targeted dose. Unlike depot formulations, slowly releasing drug at the injection site into the blood, DcNP allows multiple-drug-in-combination to collectively distribute from the injection site into the lymphatic system. Two distinct classes of long-acting injectables products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site. Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access as a part of the PBPK model validation. For clinical development, Class II long-acting drug-combination products, we leverage data from 3 nonhuman primate studies consisting of nine PK datasets: Study 1, varying fixed-dose ratios; Study 2, short multiple dosing with kinetic tails; Study 3, long multiple dosing (chronic). PBPK validation criteria were established to validate each scenario for all drugs. The models passed validation in 8 of 9 cases, specifically to predict Study 1 and 2, including PK tails, with ritonavir and tenofovir, fully passing Study 3 as well. PBPK model for lopinavir in Study 3 did not pass the validation due to an observable time-varying and delayed drug accumulation, which likely was due to ritonavir's CYP3A inhibitory effect building up during multiple dosing that triggered a mechanism-based drug-drug interaction (DDI). Subsequently, the final model enables us to account for this DDI scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.