Abstract

Aim To predict the magnitude of metabolic drug–drug interaction (mDDI) between triazolam and diltiazem and its primary metabolite N-desmethyldiltiazem (MA). Methods Relevant in vitro metabolic and inhibitory data were incorporated into a mechanistic physiologically based pharmacokinetic model within Simcyp (Version 9.1) to simulate the time-course of changes in active CYP3A4 content in gut and liver and plasma concentrations of diltiazem, MA and triazolam in a virtual population with characteristics related to in vivo studies. Results The predicted median increases in AUC(0,∞) of triazolam, which ranged from 3.9 to 9.5 for 20 simulated trials (median 5.9), were within 1.5-fold of the observed median value (4.4) in 14 of the trials. Considering the effects of diltiazem only and not those of MA, and ignoring auto-inhibition of MA metabolism and inhibition of its metabolism by diltiazem, resulted in lower increases in triazolam exposure (AUC ratios of 1.5–2.0 (median 1.7) and 2.7–5.3 (median 3.4), respectively). Conclusion Prediction of mDDIs involving diltiazem requires consideration of both competitive and time-dependent inhibition in gut and liver by both diltiazem and MA, as well as the complex interplay between the two moieties with respect to mutual inhibition of parent compound and its metabolite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call