Abstract

Genetic constitution in the intertidal gastropod Nucella lapillus influences variation in shell shape and growth rate which in turn are correlated with such habitat variables as wave action and temperature. We have investigated the response to hyperosmotic stress of samples from a cline in karyotype and allozyme frequencies and shell shape. Animals with a shell shape associated with environments where temperature and desiccation stress are important respond less to hyperosmotic stress than animals living in a high wave energy environment. With regard to the interaction between shell shape, physiology and habitat, animals with elongate shells associated with protected shores are shown to exhibit a reduced response to hyperosmotic stress compared to animals with a more spherical shell shape; this is discussed in relation to the production of an adaptive phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call