Abstract

Recent studies have confirmed that changes in the physical properties of microplastics (MPs) trigger toxicological effects and ecological risks. To explore the toxicity of different types of MPs on plants, and the influence of MP photoaging, this study investigated the toxicity mechanisms of pristine, 7 and 14 d photoaged polystyrene (PS), polyamide (PA), polyethylene (PE), and polyethylene terephthalate (PET) MPs on seed germination, root growth, nutrient fraction, oxidative stress, and antioxidant systems of Pisum sativum L. (pea) seedlings. The results showed that pristine PS and 14 d photoaged PET inhibited seed germination. Compared to the pristine MPs, photoaged MPs had negative effects on root elongation. Moreover, photoaged PA and PE impeded the nutrient transport of soluble sugars from roots to stems. Notably, the production of superoxide anion radicals (•O2-) and hydroxyl radicals (•OH) through the photoaging of MPs exacerbated oxidative stress and reactive oxygen species formation in roots. Antioxidant enzyme data revealed that the activities of superoxide dismutase and catalase were significantly activated in photoaged PS and PE, respectively, in order to scavenge •O2- and hydrogen peroxide (H2O2) accumulation and alleviate lipid peroxidation levels in cells. These findings provide a new research perspective on the phytotoxicity and ecological risk of photoaged MPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call