Abstract

Hydrogen sulfide (H2S) has been recognized as a signaling molecule as well as a cytoprotective molecule. H2S modulates neurotransmission, regulates vascular tone, protects various tissues and organs, regulates inflammation, induces angiogenesis, and detects cellular oxygen levels. H2S is produced from l-cysteine by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) together with cysteine aminotransferase (CAT). Recently, a novel pathway for the production of H2S from d-cysteine was identified, involving d-amino acid oxidase (DAO) together with 3MST. Sulfuration (also called sulfhydration), which adds sulfur atoms to the cysteine residues of target proteins to modify protein activity, has been extensively studied as a mode of H2S action. Recently, hydrogen polysulfides (H2Sn, where n = 3–7; n = 2 is termed as persulfide) have been found to sulfurate target proteins in the brain, including transient receptor potential ankyrin 1 (TRPA1) channels, Kelch-like ECH-associating protein 1 (Keap1), and phosphatase and tensin homolog (PTEN), much more potently than H2S. The physiological stimuli that trigger the production of H2S and polysulfides, and the mechanisms maintaining their local levels, remain unknown. Understanding the regulation of H2Sn (including H2S) production, and the specific stimuli that induce their release, will provide new insight into the biology of H2S and will provide novel avenues for therapeutic development in diseases involving H2S-related substances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.