Abstract
The second and third reactions of the peroxisomal beta-oxidation spiral are thought to be catalyzed by enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase bifunctional protein (L-bifunctional protein). Recently, we found the presence of D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein (D-bifunctional protein) in mammalian peroxisomes. Therefore, we studied the physiological role of the D-bifunctional protein. The contents of the L- and D-bifunctional proteins were about 0.01 and 0.5 microg/mg protein, respectively, in cultured human skin fibroblasts. The activity of conversion of hexadecenoyl-CoA to 3-ketopalmitoyl-CoA by the D-bifunctional protein was estimated to be about 0.5 milliunit/mg of fibroblast protein. This value was about 100-fold that of the L-bifunctional protein in the fibroblasts. From comparison of the activities of the bifunctional proteins with the rate of palmitate oxidation and the activities of acyl-CoA oxidase and 3-ketoacyl-CoA thiolase, it is proposed that the D-bifunctional protein plays a major role in the peroxisomal oxidation of palmitate in the fibroblasts. The contents of both the L- and D-bifunctional proteins in liver were about 2.5 microg/mg protein. Therefore, it is suggested that the D-bifunctional protein also plays a significant role in human liver peroxisomal fatty acid oxidation. Actions of the bifunctional proteins on enoyl forms of other acyl-CoA derivatives were examined. The D-bifunctional protein but not the L-bifunctional protein reacted with 2-methylhexadecenoyl-CoA and 3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-2 4-enoyl-CoA. We propose that, among the reactions of the distinct group of carboxylates oxidized specifically in peroxisomes, oxidation of 2-methyl-branched fatty acids and side-chain shortening of cholesterol for bile acid formation are catalyzed by the D-bifunctional protein, but not the L-bifunctional protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.