Abstract
Anuran estivation is characterized by long episodes of aphagia. To investigate whether estivating anurans downregulate intestinal performance as an adaptive mechanism to reduce energy expenditure, I compared the metabolic and intestinal responses to feeding, fasting and estivation among non-estivating and estivating species of the anuran families Bufonidae, Leptodactylidae and Ranidae. Standard metabolic rates of the estivating Bufo alvarius, Ceratophrys ornata and Pyxicephalus adspersus were significantly less than those of the non-estivating Bufo marinus, Leptodactylus pentadactylus and Rana catesbeiana. Whereas the digestion of rodent meals equaling 15% of anuran body mass generated significant metabolic responses for all species, specific dynamic action was significantly greater for the estivating species. For estivating species, feeding triggered more than a doubling of small intestinal mass and significant upregulation of intestinal nutrient transport rates, resulting in six- to tenfold increases in total intestinal nutrient uptake capacity. The postprandial intestinal responses of the non-estivating species were much more modest, averaging a 50% increase in small intestinal mass and 69% increase in uptake capacities. Following 1 month of laboratory-induced estivation, C. ornata and P. adspersus had further depressed metabolic rates by 20%, intestinal masses by 44%, and total intestinal uptake capacities by 60%. In a fashion similar to infrequently feeding, sit-and-wait foraging snakes, estivating anurans possess the capacity to severely downregulate intestinal performance with fasting and estivation, and subsequently upregulate the gut with feeding. The depression in gut performance during estivation aids in reducing energy expenditure, thereby increasing the duration that the animal can remain dormant while relying solely upon stored energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.