Abstract
Salicylic acid (SA) is a signaling molecule that can induce plant resistance to certain herbivores. Although the role of jasmonic acid in mediating mite-tomato plant interactions has been well studied, the role of salicylic acid has not. This study examined how the application of exogenous SA, via its effects on tomato plant physiology, alters the activity of mite digestive enzymes, mite energy reserves, and mite susceptibility to spirodiclofen. Enzymatic activity-including superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase-along with contents of total phenolic, hydrogen peroxide, and total chlorophyll significantly increased in plants 24h after treatment with 2mM of SA. In contrast, catalase activity significantly decreased in treated plants, and malondialdehyde content was unaffected. Mites fed on tomato plants treated with SA had significantly lower glutathione S-transferase, esterase, α-amylase, and aminopeptidase activities than those fed on control plants. Energy reserve analyses demonstrated a significant decrease in contents of lipid, protein, and glycogen in mites fed on SA-treated plants, whereas carbohydrate content significantly increased. The LC50 of spirodiclofen was decreased 1.8-fold for Tetranychus urticae fed on SA-treated tomato plants compared to controls. Treatment of adult mites with 2mM SA on leaf discs did not cause any direct mortality after 24h. Finally, a greenhouse bioassay confirmed that spider mite mortality following exposure to spirodiclofen was significantly higher on SA plants than on control plants. Mortality of mites exposed to half of the recommended rate of spirodiclofen was similar to those exposed to the recommended rate when they were held on treated plants. These results have valuable implications for T. urticae management programs in tomato production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.