Abstract

Upwelling is the process by which deep, cold, relatively high-CO2, nutrient-rich seawater rises to the sunlit surface of the ocean. This seasonal process has fueled geoengineering initiatives to fertilize the surface ocean with deep seawater to enhance productivity and thus promote the drawdown of CO2. Coccolithophores, which inhabit many upwelling regions naturally ‘fertilized’ by deep seawater, have been investigated in the laboratory in the context of ocean acidification to determine the extent to which nutrients and CO2 impact their physiology, but few data exist in the field except from mesocosms. Here, we used the Porcupine Abyssal Plain (north Atlantic Ocean) Observatory to retrieve seawater from depths with elevated CO2 and nutrients, mimicking geoengineering approaches. We tested the effects of abrupt natural deep seawater fertilization on the physiology and biogeochemistry of two strains of Emiliania huxleyi of known physiology. None of the strains tested underwent cell divisions when incubated in waters obtained from <1,000 m (pH = 7.99–8.08; CO2 = 373–485 p.p.m; 1.5–12 μM nitrate). However, growth was promoted in both strains when cells were incubated in seawater from ~1,000 m (pH = 7.9; CO2 ~560 p.p.m.; 14–17 μM nitrate) and ~4,800 m (pH = 7.9; CO2 ~600 p.p.m.; 21 μM nitrate). Emiliania huxleyi strain CCMP 88E showed no differences in growth rate or in cellular content or production rates of particulate organic (POC) and inorganic (PIC) carbon and cellular particulate organic nitrogen (PON) between treatments using water from 1,000 m and 4,800 m. However, despite the N:P ratio of seawater being comparable in water from ~1,000 and ~4,800 m, the PON production rates were three times lower in one incubation using water from ~1,000 m compared to values observed in water from ~4,800 m. Thus, the POC:PON ratios were threefold higher in cells that were incubated in ~1,000 m seawater. The heavily calcified strain NZEH exhibited lower growth rates and PIC production rates when incubated in water from ~4,800 m compared to ~1,000 m, while cellular PIC, POC and PON were higher in water from 4,800 m. Calcite Sr/Ca ratios increased with depth despite constant seawater Sr/Ca, indicating that upwelling changes coccolith geochemistry. Our study provides the first experimental and field trial of a geoengineering approach to test how deep seawater impacts coccolithophore physiological and biogeochemical properties. Given that coccolithophore growth was only stimulated using waters obtained from >1,000 m, artificial upwelling using shallower waters may not be a suitable approach for promoting carbon sequestration for some locations and assemblages, and should therefore be investigated on a site-by-site basis.

Highlights

  • Upwelling is a physical process involving the wind-driven replacement of surface waters with denser, colder, nutrient-rich seawater from depth

  • Incubations with strains CCMP 88E and NZEH using water from the chl max and from 500 m failed to promote growth over 72 hours, i.e., cell density remained unchanged (

  • In strain NZEH, a significant effect of seawater depth on cellular physiology was observed. Cells of this strain displayed a decline in both growth and PIC production rates and a significant increase in cellular standing stocks of PIC, particulate organic (POC) and particulate organic nitrogen (PON) when incubated in water obtained from 4,800 m compared to water from 1,000 m

Read more

Summary

Introduction

Upwelling is a physical process involving the wind-driven replacement of surface waters with denser, colder, nutrient-rich seawater from depth. Deep seawater contains higher nutrient, dissolved inorganic carbon (DIC) and CO2 concentrations than the surface ocean [1, 2]. Artificial upwelling has been put forward as a strategy to stimulate phytoplankton growth and, as a result, draw down atmospheric CO2. Upwelled seawater can provide these limiting nutrients and DIC into the euphotic zone, promoting primary production [4, 5, 12]. A number of upwelling strategies have been proposed including airlift pumps [13], and wind-/wave-powered systems [14] to increase total primary production and biomass. Modeling studies have explored the impact of artificial upwelling in carbon sequestration and the cycling of other climate relevant gases such as nitrous oxide and dimethyl sulphide, that are likely to be altered by the increase in ocean mixing [17,18,19]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.