Abstract

The effect of soil water depletion on plant water potential and leaf gas exchange of carambola (Averrhoa carambola L. cv. Arkin) in Krome very gravelly loam soil was studied in an orchard and in containers in the field and in a greenhouse. The rate of soil water depletion was determined by continuously monitoring soil water content with multi-sensor capacitance probes. Stem water potential and leaf gas exchange of carambola in containers were reduced when the soil water depletion level fell below 50% (where field capacity = 100%). Although there was a decrease in the rate of soil water depletion in the orchard as the soil dried, soil water depletion did not go below an average of 70%. This was presumably due to sufficient rainfall and capillary movement of water in the soil. Therefore, soil water content did not decline sufficiently to affect leaf gas exchange and leaf and stem water potential of orchard trees. A decline in soil water depletion below 40% resulted in a concomitant decline in stem water potential of the container trees in the field and greenhouse to below -1.0 MPa. Stomatal conductance, net CO2 assimilation, and transpiration declined significantly when stem water potential was below -1.0 MPa. The reduction of net CO2 assimilation and transpiration was proportional to the decline in stomatal conductance of container trees in the field and greenhouse. Thus, soil water depletion in Krome very gravelly loam soil must be less than 50% before water potential or leaf gas exchange of carambola is affected. Based on these results, irrigation scheduling should be based on physiological variables such as stem water potential and stomatal conductance or the amount rather than the rate of soil water depletion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call