Abstract

AbstractSoil salinisation is an important factor limiting the cultivation and distribution of Prunus mume. Therefore, identifying the regulation mechanism of salt tolerance of P. mume will promote its cultivation and molecular breeding. In this study, the garden tree species P. mume ‘Meiren’ was investigated, with a soil NaCl content (w/w) of 0.3%. Photosynthetic gas exchange parameters, relative electrical conductivity, malondialdehyde, osmoregulation substances, and antioxidant enzyme activity were measured in the early (3d), middle (10d), and late (30d) stages of stress. Salt treatment was applied for 0 h, 6 h, 24 h, and 72 h; following this, the gene library was constructed from the leaves. The results showed that the CBL-CIPK, mitogen-activated protein kinase, calcium-dependent protein kinase, and abscisic acid signalling pathways were involved in salt stress signal transduction of P. mume. Furthermore, bHLH, WRPK, ERF, and MYB were identified as potential key transcription factor families of salt tolerance in P. mume. Combined with determined physiological responses, the results showed that early salt stress inhibited the activities of RuBisCO, chlorophyll synthase, glutamyl tRNA reductase, divinyl reductase, and magnesium chelatase; resultantly, this led to a reduction in the photosynthetic rate. Also, it was found that P5CS, SS, LEA, and dehydrin regulated the synthesis of proline, soluble sugar, and macromolecular protein to alleviate osmotic stress. POD gene plays an important role in scavenging reactive oxygen species due to its regulation of POD activity. The findings of this research reveal the internal mechanism of the physiological response and provide a foundation for the construction of a genetic regulatory network in response to salt stress in P. mume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.