Abstract

The concept of a G-quartet, a unique structural arrangement intrinsic to guanine-rich DNA, was first introduced by Gellert and colleagues over 40 years ago. For decades, it has been uncertain whether the G-quartet and the structure that it gives rise to, the G-quadruplex, are purely in vitro phenomena. Nevertheless, the presence of signature G-rich motifs in the eukaryotic genome, and the plethora of proteins that bind to, modify or resolve this nucleic acid structure in vitro have provided circumstantial evidence for its physiological relevance. More recently, direct visualisation of G-quadruplex DNA at native telomeres was achieved, bolstering the evidence for its existence in the cell. Furthermore, G-quadruplex folded telomeric DNA has been found to perturb telomere function and to impede the action of telomerase, an enzyme overexpressed in >85% of human cancers, hence opening up a novel avenue for cancer therapy in the form of G-quadruplex stabilising agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.