Abstract

Oxidative stress is recognized as free radical dyshomeostasis, which has damaging effects on proteins, lipids and DNA. However, during cell differentiation and proliferation and other normal physiological processes, free radicals play a pivotal role in message transmission and are considered important messengers. Organisms maintain free radical homeostasis through a sophisticated regulatory system in which these "2-faced" molecules play appropriate roles under physiological and pathological conditions. Reactive oxygen species (ROS), including a large number of free radicals, act as redox signalling molecules in essential cellular signalling pathways, including cell differentiation and proliferation. However, excessive ROS levels can induce oxidative stress, which is an important risk factor for diabetes, cancer and cardiovascular disease. An overall comprehensive understanding of ROS is beneficial for understanding the pathogenesis of certain diseases and finding new therapeutic treatments. This review primarily focuses on ROS cellular localization, sources, chemistry and molecular targets to determine how to distinguish between the roles of ROS as messengers and in oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.