Abstract

Appropriate composition of oral saliva is essential for a healthy milieu that protects mucosa and teeth. Only few studies, with small sample numbers, investigated physiological saliva ion composition in humans. We determined saliva ion composition in a sufficiently large cohort of healthy adults and analyzed the effect of physiological stimulation. We collected saliva from 102 adults under non-stimulated and physiologically stimulated conditions (chewing). Individual flow rates, pH, osmolality, Na+, K+, Cl-, and HCO3- concentrations under both conditions as well as the individual changes due to stimulation (Δvalues) were determined. Non-stimulated saliva was hypoosmolal and acidic. Na+, Cl-, and HCO3- concentrations remained well below physiological plasma values, whereas K+ concentrations exceeded plasma values more than twofold. Stimulation resulted in a doubling of flow rates and substantial increases in pH, HCO3-, and Na+ concentrations. Overall, stimulation did not considerably affect osmolality nor K+ or Cl- concentrations of saliva. An in-depth analysis of stimulation effects, using individual Δvalues, showed no correlation of Δflow rate with Δion concentrations, indicating independent regulation of acinar volume and ductal ion transport. Stimulation-induced Δ[Na+] correlated with Δ[HCO3-] and Δ[Cl-] but not with Δ[K+], indicating common regulation of ductal Na+, Cl-, and HCO3- transport. We present a robust data set of human oral saliva ion composition in healthy adults and functional insights into physiological stimulation. Our data show (i) that flow-dependence exists for Na+ and HCO3- but not for K+ and Cl- concentrations, (ii) osmolality is flow-independent, (iii) regulation of Na+, Cl-, and HCO3- transport is coupled, (iv) regulation of flow rate and ion concentrations are independent and (v) spatially separated between acini and ducts, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.