Abstract

Spring low temperature events affect winter wheat (Triticum aestivum L.) during late vegetative or reproductive development, exposing plants to a subzero low temperature stress when winter hardening is lost. The increased climatic variability results in wheat being exposed to more frequent adverse impacts of combined low temperature and water stress, including drought and waterlogging. The responses of potted wheat plants cultivated in climatic chambers to these environmental perturbations were investigated at physiological, proteomic and transcriptional levels. At the physiological level, the depressed carbon (C) assimilation induced by the combined stresses was due mainly to stomatal closure and damage of photosynthetic electron transport. Biochemically, the adaptive effects of early moderate drought or waterlogging stress were associated with the activation of antioxidant enzyme system in chloroplasts and mitochondria of leaf under low temperature. Further proteomic analysis revealed that the oxidative stress defence, C metabolism and photosynthesis related proteins were modulated by the combined low temperature and water stress. Collectively, the results indicate that impairment of photosynthesis and C metabolism was responsible for the grain yield loss in winter wheat under low temperature in combination with severe drought or waterlogging stress. In addition, prior mild drought or waterlogging contributed to the homeostasis of oxidative metabolism and relatively better photosynthesis, and hence to less grain yield loss under later spring low temperature stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call