Abstract

1. The physiology of ventral pallidal (VP) cells was investigated using in vivo intracellular recording and staining techniques in adult rats. Based on electrophysiological criteria, three different types of cells were found: type A cells, which fired phasic spikes that did not exhibit a substantial afterhyperpolarization (AHP), type B cells, which exhibited a slow ramplike depolarization that preceded the short-duration action potential; the spike was followed by a prominent AHP, and type C cells, which were the only cells that fired spikes in couplets or bursts, with the spikes in a burst exhibiting a progressive increase in duration and a decrease in amplitude. These cells also exhibited a rebound low threshold spikelike event. Furthermore, 18% of the VP cells recorded exhibited a slow subthreshold oscillation of the membrane potential (< 1 Hz). 2. The response of VP cells to stimulation of fibers arising from the prefrontal cortex, nucleus accumbens, and mediodorsal thalamic nucleus (MD) was examined. In contrast to our initial predictions, all cells responded to nucleus accumbens stimulation with excitation. Type A and B cells responded to nucleus accumbens stimulation with excitation and to MD stimulation with antidromic-like responses, orthodromic excitation, or evoked inhibitory postsynaptic potentials. Only type A cells responded to prefrontal cortical stimulation. Type C cells only responded to stimulation of the nucleus accumbens, which resulted in evoked excitatory postsynaptic potentials. 3. The cells in the VP therefore can be segregated into three physiologically defined groups according to action potential discharge patterns and their response to afferent fiber stimulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.