Abstract

CrossFit® began as another exercise program to improve physical fitness and has rapidly grown into the “sport of fitness”. However, little is understood as to the physiological indicators that determine CrossFit® sport performance. The purpose of this study was to determine which physiological performance measure was the greatest indicator of CrossFit® workout performance. Male (n = 12) and female (n = 5) participants successfully completed a treadmill graded exercise test to measure maximal oxygen uptake (VO2max), a 3-minute all-out running test (3MT) to determine critical speed (CS) and the finite capacity for running speeds above CS (D′), a Wingate anaerobic test (WAnT) to assess anaerobic peak and mean power, the CrossFit® total to measure total body strength, as well as the CrossFit® benchmark workouts: Fran, Grace, and Nancy. It was hypothesized that CS and total body strength would be the greatest indicators of CrossFit® performance. Pearson’s r correlations were used to determine the relationship of benchmark performance data and the physiological performance measures. For each benchmark-dependent variable, a stepwise linear regression was created using significant correlative data. For the workout Fran, back squat strength explained 42% of the variance. VO2max explained 68% of the variance for the workout Nancy. Lastly, anaerobic peak power explained 57% of the variance for performance on the CrossFit® total. In conclusion, results demonstrated select physiological performance variables may be used to predict CrossFit® workout performance.

Highlights

  • CrossFit® (CrossFit, Inc., Washington, DC, USA) began as another exercise program to improve physical fitness and has grown exponentially from 49 CrossFit® gym affiliates in 2005 to over 13,000 today [1,2]

  • Though all affiliates are different, a CrossFit® class may consist of a warm-up, skill or strength exercise, and workout of the day all completed within an hour

  • Findings indicated that different physiological measures predicted performance better than others for specific CrossFit® benchmark workouts

Read more

Summary

Introduction

CrossFit® (CrossFit, Inc., Washington, DC, USA) began as another exercise program to improve physical fitness and has grown exponentially from 49 CrossFit® gym affiliates in 2005 to over 13,000 today [1,2]. CrossFit® training prescribes “constantly varied, high intensity, functional movement”, with functional movement defined as compound multi-joint exercises [2]. CrossFit® training has been described as a form of high-intensity functional training (HIFT) which has been defined. Sports 2019, 7, 93 as “a training style [or program] that incorporates functional, multimodal movements, performed at relatively high intensity, and designed to improve parameters of general physical fitness and performance” [2,3]. The CrossFit® training paradigm may prove beneficial in improving health and physiological performance measures. Those that participated in CrossFit® training revealed improvements in strength, aerobic and anaerobic capacity, and power output [4,5,6]. CrossFit® training has improved the following health variables: Body composition, diastolic blood pressure, and resting heart rate [6,7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.