Abstract

During lag phases microbial cells adapt to their environment and prepare to proliferate. Physiological parameters of B. cereus cells upon exposure to near-growth-boundary acid stress were investigated and markers for the transition between lag phase and growth were identified using fluorescent probes combined with flow cytometry. Determination of cell counts and optical density revealed lag phases of 1h, 2h and 5h, in cultures shifted to pH 7, pH 5.3 (set with lactic acid) and pH 4.9 (set with sulfuric acid), respectively. The obtained lag phases fitted the trends in ATP levels, which were constant during the lag phase and increased after the onset of growth. Both the percentage of PI-stained cells and cells with a significant membrane potential decreased during the lag phase. This points to repair of membrane damage and the loss of membrane potential. However, both trends extended in the growth phase, thus not suitable to mark the onset of growth. The activity of the electron transfer chain and esterases did allow for assessment of transition between lag and growth phase. These activities were generally low during the lag phase and increased after the onset of growth. Our results show that, independent of the duration of the lag phase, for different conditions the same physiological trends could be observed. The change in signal of selected probes can be used as a marker for transition from lag phase to the growth phase and may aid in identification of novel targets interfering with bacterial exit from lag phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.