Abstract
Characterization of physiological variability in phytoplankton photosynthetic efficiencies is one of the greatest challenges in assessing ocean net primary production (NPP) from remote sensing of surface chlorophyll (Chl). Nutrient limitation strongly influences phytoplankton intracellular pigmentation, but its impact on Chl-specific NPP (NPP(*)) is debated. We monitored six indices of photosynthetic activity in steady-state Dunaliella tertiolecta cultures over a range of nitrate-limited growth rates (μ), including photosynthetic efficiency of PSII (F(v)/F(m)), O(2)-based gross and net production, 20 min and 24 h carbon assimilation, and carbon- and μ-based NPP. Across all growth rates, O(2)-based Chl-specific gross primary production (GPP(*)(O(2))), NPP(*), and F(v)/F(m) were constant. GPP(*)(O(2)) was 3.3 times greater than NPP(*). In stark contrast, Chl-specific short-term C fixation showed clear linear dependence on μ, reflecting differential allocation of photosynthate between short-lived C products and longer-term storage products. Indeed, (14)C incorporation into carbohydrates was five times greater in cells growing at 1.2 day(-1) than 0.12 day(-1). These storage products are catabolized for ATP and reductant generation within the period of a cell cycle. The relationship between Chl-specific gross and net O(2) production, short-term (14)C-uptake, NPP(*), and growth rate reflects cellular-level regulation of fundamental metabolic pathways in response to nutrient limitation. We conclude that growth rate-dependent photosynthate metabolism bridges the gap between gross and net production and resolves a controversial question regarding nutrient limitation effects on primary production measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.