Abstract

The physiological noise in the resting brain, which arises from fluctuations in metabolic-linked brain physiology and subtle brain pulsations, was investigated in six healthy volunteers using oxygenation-sensitive dual-echo spiral MRI at 3.0 T. In contrast to the system and thermal noise, the physiological noise demonstrates a signal strength dependency and, unique to the metabolic-linked noise, an echo-time dependency. Variations of the MR signal strength by changing the flip angle and echo time allowed separation of the different noise components and revealed that the physiological noise at 3.0 T (1) exceeds other noise sources and (2) is significantly greater in cortical gray matter than in white matter regions. The SNR in oxygenation-sensitive MRI is predicted to saturate at higher fields, suggesting that noise measurements of the resting brain at 3.0 T and higher may provide a sensitive probe of functional information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.