Abstract

In MRI, physiological noise which originates from cardiac and respiratory functions can induce substantial errors in detecting small signals in the brain. In this work, we explored the effects of the physiological noise and their compensation methods in gradient-echo myelin water imaging (GRE-MWI). To reduce the cardiac function induced inflow noise, flow saturation RF pulses were applied to the inferior portion of the head, saturating inflow blood signals. For the respiratory function induced B0 fluctuation compensation, a navigator echo was acquired, and respiration induced phase errors were corrected during reconstruction. After the compensations, the resulting myelin water images show substantially improved image quality and reproducibility. These improvements confirm the importance and usefulness of the physiological noise compensations in GRE-MWI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.