Abstract

Abstract The relative growth rates for tomato (Lycopersicon esculentum Mill.) genotypes differing in carboxylation efficiency (CE) were similar. Manapal (dg), which had a high CE, had a more rapid vegetative phase growth rate and LA 1098 (low CE) was slower growing. Specific leaf dry weight was greater in high CE genotypes indicating that it may be a useful selection criterion. Leaf thickness was greater in the high CE genotypes (Manapal (dg) and 067) than in the intermediate CE cultivars. Manapal (dg) and 067 (high CE) has much greater percent air space in the palisade tissue and much longer palisade cells than 7879 and VF 36 (intermediate CE). Conversely the number of palisade cells cm−2 was much less in the high CE genotypes. These results indicate that differences in gaseous diffusion potential may in part account for genotypic differences in CE. Differences in CE at 21 and 2% O2 indicated that genotypic differences for photorespiration rate was not an important contributor to the variation in CE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call