Abstract

Continuous monitoring of mental workload and situation awareness in operational environments is useful for understanding and prediction of human performance. Such information can be used to develop real-time adaptive systems to enhance human performance. In this paper, we investigate the use of workload- and attention-related physiological measures to predict operator performance and situation awareness in the context of tele-exploration with a small team of robots. A user study is conducted based on a simulated scenario involving visual scanning and manual control tasks with varying levels of task-load. Brain activity and eye movements of the participants are monitored across the experimental tasks using electroencephalogram and eye tracker sensors. The performances of the subjects are evaluated in terms of target detection and situation awareness (primary metrics) as well as reaction time and false detection (secondary metrics). Moreover, individual differences in two specific visual skills, visual search (VS) and multi-object tracking (MOT) are considered as between-subject factors in the experimental design. The main effects of task type and individual differences reveal that VS and MOT skill have significant effects on target detection and situation awareness, respectively. The correlations of physiological measures with the task performance and situation awareness are analyzed. The results suggest that brain-based features (mental workload and distraction) which represent the covert aspect of attention are better suited to predict the secondary performance metrics. On the other hand, glance-based features which represent the overt aspect of attention are shown to be the best predictors of the primary performance metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.