Abstract

Near infrared spectroscopy is the promising and noninvasive technique that can be used to detect the brain functional activation by monitoring the concentration alternations in the haemodynamic concentration. The acquired NIRS signals are commonly contaminated by physiological interference caused by breathing and cardiac contraction. Though the adaptive filtering method with least mean squares algorithm or recursive least squares algorithm based on multidistance probe configuration could improve the quality of evoked brain activity response, both methods can only remove the physiological interference occurred in superficial layers of the head tissue. To overcome the shortcoming, we combined the recursive least squares adaptive filtering method with the least squares support vector machine to suppress physiological interference both in the superficial layers and deeper layers of the head tissue. The quantified results based on performance measures suggest that the estimation performances of the proposed method for the evoked haemodynamic changes are better than the traditional recursive least squares method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.